

SystemC AMS extension — alignment with SystemC-TLM

Contribution to AMS-TLM Workshop January 2008

Martin Barnasconi

Requirements

- Interface and communication: SystemC TLM 2.0 compliant
 - using PVInitiator port and PVTarget port
 - support interrupt based synchronization (using sc core::sc out port)
- Register interface based on the (CoWare) SCML memory model
 - register interface splits communication in architecture context from functional modeling
 - note: internal register communication/callbacks not part of TLM standard
- Compatibility and Interoperability with digital functional models and subsystems
- Approach: Wrap SystemC AMS subsystem into 'TLM shell'
 - embed functional model in architecture block
 - two options
 - option 1: Plain SystemC FIFO interface
 - option 2: communicate directly to SystemC AMS extension / TDF solver

anno 2006

anno 2007/8

Conclusions

- Compatibility and interoperability
 - using communication, protocol and payload as proposed by TLM WG
 - using SCML register interface similar to other sub-systems
- Embedding/wrapping of functional models
 - valid for AMS and digital subsystems
 - two approaches possible
 - 1. Based on standard SystemC FIFO and communication
 - 2. New register communication in SystemC AMS extensions (e.g. "TDF queues")
- Evaluation of pros and cons for both options
 - Impact on standardization for both AMS and TLM
 - future AMS/TLM (in)dependency
 - Impact on simulation performance, flexibility, compatibility and interoperability

